z
Açılmayan linkmi var ? Bize

OFİRİKSON | ÖĞRETMEK UNUTMAKTAN İYİDİR.

Descartes

Descartes 
 
Modern felsefenin ve analitik geometrinin kurucusu olan Descartes (1596 - 1650) için de, Bacon'da olduğu gibi, amaç doğayı egemenlik altına almaktır. Çünkü insan ancak o zaman mutlu olabilir. Fakat doğa, skolastiğin sağladığı bilgilerle egemenlik altına alınamaz. Böylece Descartes'ın da skolastiğin insanı yanlışa götürdüğünü düşündüğü anlaşılmaktadır. Ona göre, bunun iki nedeni vardır.
 
1-Skolastiğin kavramları açık ve seçik değildir. 
2-Bu yöntem doğru bilgi elde etmeye uygun değildir. 
 
Böylece Descartes yeni bir yönteme gereksinim olduğunu belirtir. Çünkü ona göre doğruyu yanlıştan ayırt etme gücü, yani akıl (sağduyu) eşit olarak dağıtılmıştır. O halde bu kadar yanlış bilginin kaynağı akıl olamaz. Böylece Descartes, insanların yanlışa düşmelerinin tek nedeninin doğru bir yönteme sahip olmamaları olduğu sonucunu çıkarır.
 
Bundan sonra yöntemini kurmaya çalışan Descartes, öncelikle bu konuda kendine nelerin yardımcı olacağını araştırır ve iki şeyin bulunduğuna karar verir: 
1-Klasik mantık 
2-Eskilerin kullandığı Analiz 
 
Descartes, eskiden beri kullanmakta olan bu iki yöntemden klasik mantığın, bilinenleri başkalarına öğretmekte, genç zekaları çalıştırmakta ve onlara bir disiplin kazandırmakta yararlı olduğunu, ancak yeni bir bilgi elde etmekte işe yaramadığını belirtir. Çünkü ona göre, bu mantıkta biçim ve içerik ayrılmıştır. Oysa ki bilgide biçim ve içerik iç içedir.
 
Eskilerin kullandığı analize gelince, Descartes, Platon'dan beri eskilerin matematiğin en yalın bilim olduğunu ve diğer bilimlerin temelinde yer aldığını, fakat kendi dönemindeki matematiğin bu özellikten yoksun bulunduğunu belirtir. Bunun üzerine eskilerin matematik çalışmalarını incelemeye koyulur ve Papus'un Matematik Koleksiyonları adlı kitabında kanıtlamanın iki boyutundan söz edildiğini belirler. Bunlar analiz ve sentezdir.
 
Descartes bu iki yoldan analizin daha doğru olduğuna karar verir. Matematikle ilgili çalışmaları sonucunda da analitik geometriyi bulur. Burada esas olan bir cebir denkleminin bir geometrik şekille anlatılmasıdır. Descartes'ın bu önemli buluşundan sonra diğer önemli bir katkısı da geometri ile cebir arasında kurduğu paralelizmin aynı şekilde matematik ve diğer bilimler arasında da kurulabileceğini belirtmesidir. Çünkü ona göre her hangi bir bilimde bir şeyi bilmek demek aslında sayı ve ölçüden başka bir şey değildir. Bundan dolayı da bütün bilimlerde tek bir yöntem uygulamak olanaklıdır. Bu da matematiksel yöntemdir. Böylece ilk defa bütün bilimlerin yönteminin tek bir yöntem olduğu belirtilmiştir. Bu nedenle Descartes'ın yöntemine evrensel matematik yöntem denmiştir.
 
Descartes bu yöntemini dört kuralla temellendirmiştir. 
1-Apaçıklık Kuralı: Doğruluğu apaçık bilinmeyen hiçbir şeyi doğru olarak kabul etmemek, yani acele yargılara varmaktan ve ön yargılara saplanmaktan çekinmek, yargılarda ancak kendilerinden kuşkulanılmayacak derecede açık ve seçik olarak kavranılan şeyleri bulundurmak. 
 
Bu kuralda dikkat çeken en önemli yön insanın bir konuyu araştırmaya başlarken, ön yargısız davranmasının gerekliliğidir. Bu ise oldukça zordur. Çünkü insan hem doğuştan getirdiği, hem de yaşamı boyunca edindiği pek çok ön yargıya sahiptir. Bunu aşmak ise çok zordur. Ancak Descartes bunun için yöntemsel kuşkuculuk'u önerir
 
Bu yöntemin esası, sağlam bir nokta buluncaya kadar sezişle apaçık olarak kavranılamayan her şeyden kuşku duymaktır. Bu yönüyle kuşkucuların yöntemlerinden tamamen farklı olan yöntemsel kuşkuculuk, Descartes'ın deyimiyle, gerçeği, yani kayayı bulmak için gevşek toprak ve kumu atmak amacına dayanır. Böylece elde edilen bilgi artık kendisinden kuşku duyulmayan, apaçık olarak kavranılan, doğruluğuna güvenilen bilgi olacaktır. 
 
2-Analiz Kuralı: Bu kural incelenecek problemlerden her birini, olanaklar ölçüsünde ve daha iyi çözümlemek için gerektiği kadar parçalara ayırmayı belirtir, yani karmaşık ve karanlık olan önermelerden, basamak basamak daha yalın önermelere inmek ve daha sonra bu yalın önermelerden başlayarak daha karmaşıkların bilgisini elde etmektir. 
 
3-Sıra Kuralı: En yalın ve bilinmesi en kolay şeylerden başlayarak, tıpkı basamak basamak bir merdivenden çıkar gibi, derece derece daha karmaşık olanların bilgisine yükselirken, doğaları gereği ard arda sıralanmayan şeyler arasında bile bir sıra olduğunu öngörerek düşünmeyi yürütmektir.
 
4-Sayış kuralı: Bu kural hiçbir şeyin unutulup atlanmadığından emin olmak için, her yönden tam sayış ve genel tekrar yapmayı belirtir. Burada dikkat edilmesi gereken dört nokta vardır. Sayışın sürekli, kesiksiz, yeter ve sıralı olması.
 
Descartes'ın bu analiz ağırlıklı, yöntemsel kuşkuculuğa dayanan yöntemi, felsefe için gerçekten çok yenidir. Bu anlamda o, modern felsefenin kurucusu kabul edilmiştir. Ancak onun bu başarısını bilimde de gösterdiğini söylemek zordur. Çünkü bilim anlayışında önemli yanlışlar vardır. Aslında bilimlere matematiğin uygulanabileceğini belirtmesi önemlidir. Örneğin fiziği matematiğe, daha doğrusu geometriye indirgemeye çalışması yanlıştır. Çünkü modern bilim anlayışında bilimlerin inceleme alanlarını geometrik nesnelere indirgemek, yani yalnızca yayılım olarak düşünmek olanaksızdır. Bundan dolayı da, Descartes'ın anladığı anlamda matematiksel yöntem bilimlerde başarıyla uygulanamaz.
 
Bilimin yöntemi ve kartezyen felsefe sistemiyle ünlü olan Descartes, aynı zamanda büyük bir matematikçidir. Cebirsel işlemleri geometriye uygulayarak analitik geometriyi kurmuştur. O zamana kadar geometri ve cebir problemleri kendi özel yöntemleri ile ayrı ayrı çözülmekteydi. Ancak Descartes, cebir ve geometri arasındaki bu mesafeyi ortadan kaldıran, cebiri geometriye uygulayan genel bir yöntem ileri sürdü. Descartes'ın bu yönteminin iki amacı vardı: 
 
1. Cebirsel işlemlerle, geometriyi şekil kullanımından kurtarmak. 
2. Cebir işlemlerine geometrik yorumlarla anlam kazandırmak. 
Descartes bu bağlamda, ilk defa koordinat geometrisi fikrini şekil de görüldüğü gibi ifade etti. 
 
Buna göre, ox ve oy doğruları, o noktasında (orijinde) birbirlerini dik olarak keserler. Bu doğrular, aynı düzlemde bulunan bir P noktasının konumunu belirlemek için eksenler olarak kullanılır. P noktasının konumu, eksenler üzerinde OM=x ve PM=y uzaklıkları ile belirlenir. Yani P(x,y) noktasının tanımlanabilme koşulu x ve y gibi iki parametre yardımıyla sağlanmaktadır. x ve y uzaklıklarına P noktasının koordinatları denir. x ve y arasındaki farklı münasebetler aynı düzlemde farklı eğrilere tekabül eder. Böylece, eğer y, x ile orantılı olarak büyürse, yani y=kx olursa, bir doğru parçasını ve y=kx2 olursa, bir parabolü temsil eder. Bu tür denklemler cebirsel olarak çözülebilir ve bulunan neticeler geometrik olarak yorumlanabilir. Bu şekilde, daha önce çözülemeyen ya da çok güçlükle çözülebilen pek çok fizik probleminin çözümü bundan sonra (örneğin Newton'da) mümkün olmuştur. 
 
Descartes bütün fiziğin bu şekilde geometrik ilişkilere indirgenebileceğini düşünerek, bütün evreni matematiksel olarak açıklamaya çalışmıştır.
 
Descartes fizik ve evrenbilimle de ilgilenmiş ve 1644 yılında yayımladığı Principia Philosophia (Felsefenin İlkeleri) adlı Latince yapıtında ileri sürmüş olduğu Çevrimler Kuramı ile Newton'dan önce evrenin yapısı ve işleyişine ilişkin mekanik bir açıklama getirmişti; bu yapıt, daha sonra Fransızca'ya çevrildi ve Avrupa düşüncesi üzerinde çok etkili oldu.
 
Aristotelesçi hareket düşüncesi, gezegenleri yöneten gücün, aynı zamanda onları ileriye doğru sürükleyen güç olduğunu benimsiyordu. Aslında Yunan Mitolojisi'ne, yani bir savaş arabası ile atlarla donanmış Apollon (Güneş) tasarımına dayanan bu inanç Hıristiyan Mitolojisi tarafından da benimsenmiş, ancak atların yerine meleklerin gücü geçirilmişti. Diğer taraftan 16. yüzyılın önde gelen gökbilimcilerinden Tycho Brahe ve yandaşları, Aristotelesçi Evren Kuramı'na sonradan eklenen ve gökcisimlerini taşıdıklarına inanılan saydam ve katı kürelerin bulunmadığını gözlemsel olarak kanıtlamışlar ve böylece büyük bir sorunun doğmasına sebebiyet vermişlerdi: Şâyet gökcisimlerini saydam ve katı küreler taşımıyorsa, ne taşıyordu? Mekanik oluşumları, maddenin madde üzerindeki etkisiyle açıklamak gerektiğini düşünen Descartes, uzayın boş olmadığı görüşüyle birlikte, bir cismin devinebilmesi için gerekli olan kuvvetin başka bir cisim tarafından sağlanması gerektiği görüşünü de gelenekten almıştı; fakat artık atları ve melekleri kullanmıyordu. Bütün gezegenlerin, akışkan özdekle dolu bir uzayda oluşan çevrimlerin, yani girdapların veya hortumların merkezinde bulunduğunu savunuyordu. Bu çevrimlerin dönüşü, merkezlerinin yakınında çok hızlıydı ve gezegenlerin eksenleri çevresinde dönmelerini sağlıyordu. Çevrimlerin dış kısımları ise, gezegenlerin sahip oldukları uyduları dolandırıyordu. Yerel gezegensel çevrimler, merkezinde Güneş'in bulunduğu daha geniş bir çevrimin içine oturmuştu; öyle ki bu çevrim, gezegenleriyle birlikte diğer çevrimlerin düzenli bir biçimde Güneş'in çevresinde dolanmasını sağlıyordu. 
 
Bu kuram çok akıllıca ve ilk bakışta çok çekiciydi; çünkü başka olguların yanında Yersel dönüş sırasında neden güçlü hava akımlarının oluşmadığını ve küçük cisimlerin neden Yersel çevrim merkezine doğru gittiklerini veya düştüklerini açıklayabiliyordu.
 
Bir varsayım, öndeyilerinin doğruluğu ile yargılanmalı ve değerlendirilmelidir. Descartes'ın varsayımının güçsüzlüğü, matematiksel olarak işlenememesi ve bu nedenle yeterli düzeyde denetlenememesi ve sorgulanamamasından kaynaklanıyordu; ama matematiksel olarak gösterilemediği için denetlenmesi ve sınanması olanaksızdı. Akışkanların devinimine ilişkin sorunlar, 17. yüzyıl matematiğinin dışında kalıyordu. Descartes'ın varsayımından yararlanarak, Güneş'e daha yakın olan gezegenlerin daha hızlı hareket etmeleri gerektiğini öngörmek olanaklıydı; fakat gezegenlerin uzaklıkları ile dolanım süreleri, yani periyotları ararsında bulunması gereken kesin ilişkiyi ve bağlantıyı öngörmek olanaksızdı. Ayrıca, karmaşık bir çevrimler dizgesinde, bir gezegenin çizdiği yörüngenin biçimini öngörmek de mümkün değildi. Gezegen devinimlerine ilişkin yasalar, Kepler tarafından matematiksel bir kesinlikle ortaya konulmuştu ve artık Kepler Yasaları'nın kendisinden çıkarsanacağı doyurucu bir mekanik kurama gereksinim duyulmaktaydı; bulanık ve niteliksel bir biçimde gezegen devinimlerinin temel özellikleriyle ilgilenen kuramlar, artık ömürlerini tamamlamışlardı.
 

Bir Yudum Hikaye

Evin minik faresi, duvardaki çatlaktan bakarken çiftçi ve eşinin mutfakta bir paketi açtıklarını gördü. Kendi kendine: İçinde hangi yiyecek var acaba ? Devamını Gör